Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (9): 40-47.doi: 10.3969/j.issn.2097-0706.2023.09.006
• Energy Storage Technology • Previous Articles Next Articles
ZHANG Zhongping1(), LIU Heng*(
), XIE Yurong1, ZHAO Dazhou1, MOU Min1, CHEN Qiao1
Received:
2023-05-05
Revised:
2023-06-08
Published:
2023-09-25
Supported by:
CLC Number:
ZHANG Zhongping, LIU Heng, XIE Yurong, ZHAO Dazhou, MOU Min, CHEN Qiao. Application and research progress of molten salt heat storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 40-47.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.09.006
Table 1
Characteristics of various energy storage technologies
储能类型 | 储能方式 | 发展现状 | 容量范围 | 优点 | 缺点 |
---|---|---|---|---|---|
机械储能 | 抽水蓄能 | 商业化 | 10 kW~100 MW | 容量大、寿命长 | 选址受限、建设周期长 |
压缩空气储能 | 商业化 | 10~100 MW | 容最大、快速响应、容量功率范围灵活 | 选址受限 | |
飞轮储能 | 商业化 | 10 kW~1 MW | 高效、寿命较长 | 自放电率高、短期储能、成本高 | |
电化学储能 | 锂离子电池 | 商业化 | 10 kW~300 MW | 能量需度高、高效率、无污染 | 成本较高 |
全钒液流电池 | 商业化早期 | 100 kW~10 MW | 充放电次数多、容量大、寿命短 | 能量密度较低 | |
钠硫电池 | 商业化 | 100 kW~10 MW | 结构紧凑、容量大、效率高 | 运行维护费用高 | |
储热 | 熔盐储热 | 商业化 | 10 kW~100 MW | 储能密度大、无污染、安全稳定,适用于大规模、长寿命系统 | 初期投资成本高,熔盐性能、关键设备待提升 |
固体储热 | 商业化 | 10 kW~100 MW | 储热能力强,温度上限高 | 换热不稳定、寿命短 | |
水储热 | 商业化 | — | 储热稳定、来源丰富、投资低 | 储热温差小、温度低 | |
电磁储能 | 超级电容器 | 研发中 | 10~100 kW | 充放电快速、高效率、寿命长 | 能量密度低、成本高 |
超导储能 | 研发中 | — | 功率大、占地小、损耗小 | 成本高、自放电率高 |
Table 2
Recent simulation studies on the molten salt heat storage system coupled with coal-fired units
作者 | 模拟软件 | 机组功率与类型 | 熔盐加热方式 | 模拟分析结果 |
---|---|---|---|---|
邹小刚等[ | Ebsilon | 350 MW燃煤 | 电加热 | 电加热熔盐系统循环热效率为33.2%,机组最低发电负荷可降至25.0%以下 |
刘金恺等[ | Matlab | 600 MW燃煤 | 电加热 | 电加热熔盐储热,释热时加热旁路给水,调峰深度17.83% |
范庆伟等[ | Ebsilon | 600 MW燃煤 | 再热蒸汽 | 储热过程中每增加1 MW储热功率,耗煤增加0.3 g/(kW·h) |
张显荣等[ | Aspenplus | 600 MW燃煤 | 再热蒸汽 | 机组新增上/下调峰容量29.25/36.50 MW,新增上/下调峰深度4.87%/6.08% |
王惠杰等[ | Aspenplus +Ebsilon | 塔式太阳能+ 660 MW燃煤 | 塔式太阳能 集热器 | 燃煤机组在80.00%~90.00%THA负荷下运行,煤耗降低率由5.76%提高到15.54% |
庞力平等[ | Thermoflow | 660 MW燃煤 | 再热蒸汽 | 储放热阶段,储热阶段的最大调峰量为6.82%,放热阶段为1.82%,明显提高了机组对负荷的响应速度 |
王坚等[ | 无 | 350 MW燃煤 | 主蒸汽+再热蒸汽 | 储能规模达到650 MW·h以上,系统综合储能效率>90.2% |
[1] | 杨水丽, 来小康, 丁涛, 等. 新型储能技术在弹性电网中的应用与展望[J]. 储能科学与技术, 2023, 12(2):515-528. |
YANG Shuili, LAI Xiaokang, DING Tao, et al. Application and prospect of new energy storage technologies in resilient power systems[J]. Energy Storage Science and Technology, 2023, 12(2):515-528. | |
[2] | 郑云平, 李明, 张艳丽, 等. 新型储能政策分析与建议[J/OL]. 储能科学与技术, 2023:1-10(2023-04-06)[2023-06-06].https://doi.org/10.19799/j.cnki.2095-4239.2023.0140. |
ZHENG Yunping, LI Ming, ZHANG Yanli, et al. Analysis and suggestions on new energy storage policy[J/OL]. Energy Storage Science and Technology, 2023:1-10(2023-04-06)[2023-06-06].https://doi.org/10.19799/j.cnki.2095-4239.2023.0140. | |
[3] |
魏小兰, 谢佩, 张雪钏, 等. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5):2423-2431.
doi: 10.11949/0438-1157.20191541 |
WEI Xiaolan, XIE Pei, ZHANG Xuechuan, et al. Research on preparation and thermodynamic properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5):2423-2431. | |
[4] | 欧阳子区, 王宏帅, 吕清刚, 等. 煤粉锅炉发电机组深度调峰技术进展[J/OL]. 中国电机工程学报, 2023:1-22(2023-02-23)[2023-06-06].https://doi.org/10.13334/j.0258-8013.pcsee.222007. |
OUYANG Ziqu, WANG Hongshuai, QinggangLYU, et al. Research progress on deep peak shaving technology of pulverized coal-fired boiler power unit[J/OL]. Proceedings of the CSEE, 2023:1-22(2023-02-23)[2023-06-06].https://doi.org/10.13334/j.0258-8013.pcsee.222007. | |
[5] | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3):1052-1076. |
CHEN Haisheng, LI Hong, MA Wentao, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3):1052-1076. | |
[6] | 张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4):1295-1301. |
ZHANG Weiling, GU Han, ZHANG Chao, et al. Study on technical economic characteristics and development trends of compressed air energy storage[J]. Energy Storage Science and Technology, 2023, 12(4):1295-1301. | |
[7] | 马汀山, 王妍, 吕凯, 等. “双碳”目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1):136-148. |
MA Tingshan, WANG Yan, LYU Kai, et al. Research progress on flexibility transformation technology of coupled energy storage for thermal power units under the "dual-carbon" goal[J]. Proceedings of the CSEE, 2022, 42(S1):136-148. | |
[8] | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9):2772-2780. |
ZHANG Huamin. Development,cost analysis considering various durations,and advancement of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11(9):2772-2780. | |
[9] |
蒋文坤, 韩颖慧, 薛智文, 等. 多能互补能源系统中储能原理及其应用[J]. 综合智慧能源, 2022, 44(1):63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
JIANG Wenkun, HAN Yinghui, XUE Zhiwen, et al. Energy storage technologies and their applications in multi-energy complementary power system[J]. Integrated Intelligent Energy, 2022, 44(1):63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
|
[10] | 刘阳, 滕卫军, 谷青发, 等. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1):312-318. |
LIU Yang, TENG Weijun, GU Qingfa, et al. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis[J]. Energy Storage Science and Technology, 2023, 12(1):312-318. | |
[11] | 何雅玲, 严俊杰, 杨卫卫, 等. 分布式能源系统中能量的高效存储[J]. 中国科学基金, 2020, 34(3):272-280. |
HE Yaling, YAN Junjie, YANG Weiwei, et al. High efficient energy storage in distributed energy system[J]. Bulletin of National Natural Science Foundation of China, 2020, 34(3):272-280. | |
[12] |
YUAN F, HE Y L, LI M J, et al. Study on the theoretical calculation method for the effective thermal conductivity of carbon nanotube composite molten salt for solar energy application[J]. Solar Energy Materials and Solar Cells, 2022, 238:111631.
doi: 10.1016/j.solmat.2022.111631 |
[13] |
ALJAERANI H A, SAMYKANO M, SAIDUR R, et al. Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power:A critical review[J]. Journal of Energy Storage, 2021, 44:103280.
doi: 10.1016/j.est.2021.103280 |
[14] |
LI C, LI Q, LU X K, et al. Inorganic salt based shape-stabilized composite phase change materials for medium and high temperature thermal energy storage:Ingredients selection,fabrication,microstructural characteristics and development,and applications[J]. Journal of Energy Storage, 2022, 55:105252.
doi: 10.1016/j.est.2022.105252 |
[15] |
YADAV A, VERMA A, KUMAR A, et al. Recent advances on enhanced thermal conduction in phase change materials using carbon nanomaterials[J]. Journal of Energy Storage, 2021, 43:103173.
doi: 10.1016/j.est.2021.103173 |
[16] | 熊亚选, 张慧, 吴玉庭, 等. 纳米颗粒对二元硝酸盐表面张力和密度的影响[J]. 储能科学与技术, 2021, 10(4):1297-1304. |
XIONG Yaxuan, ZHANG Hui, WU Yuting, et al. Effect of nanoparticles on surface tension and density of binary nitrate[J]. Energy Storage Science and Technology, 2021, 10(4):1297-1304. | |
[17] | 武延泽, 王敏, 李锦丽, 等. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1):10-18. |
WU Yanze, WANG Min, LI Jinli, et al. Research progress in improving heat transfer and heat storage performance of molten nitrate by nanomaterials[J]. Journal of Materials Engineering, 2020, 48(1):10-18. | |
[18] |
JEONG S, JO B. Distinct behaviors of KNO3 and NaNO3 in specific heat enhancement of molten salt nanofluid[J]. The Journal of Energy Storage, 2023, 57:106209.
doi: 10.1016/j.est.2022.106209 |
[19] |
GROSU Y, ANAGNOSTOPOULOS A, BALAKIN B, et al. Nanofluids based on molten carbonate salts for high‑temperature thermal energy storage:Thermophysical properties,stability,compatibility and life cycle analysis[J]. Solar Energy Materials and Solar Cells, 2021, 220:110838.
doi: 10.1016/j.solmat.2020.110838 |
[20] |
田禾青, 周俊杰, 郭茶秀. 熔盐储热材料比热容强化的研究进展[J]. 化工进展, 2020, 39(2):584-595.
doi: 10.16085/j.issn.1000-6613.2019-0798 |
TIAN Heqing, ZHOU Junjie, GUO Chaxiu. Progress of specific heat enhancement of molten salt thermal energy storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(2):584-595.
doi: 10.16085/j.issn.1000-6613.2019-0798 |
|
[21] |
ROPER R, HARKEMA M, SABHARWALL P, et al. Molten salt for advanced energy applications:A review[J]. Annals of Nuclear Energy, 2022, 169:108924.
doi: 10.1016/j.anucene.2021.108924 |
[22] | 张灿灿, 韩松涛, 吴玉庭, 等. 硝基熔盐纳米流体在扭曲扁管内流动与换热特性[J]. 储能科学与技术, 2022, 11(11):3641-3648. |
ZHANG Cancan, HAN Songtao, WU Yuting, et al. Nitrate molten salt-based nanofluid flow and heat transfer characteristics in twisted tube[J]. Energy Storage Science and Technology, 2022, 11(11):3641-3648. | |
[23] |
ALJAERANI H A, SAMYKANO M, PANDEY A K, et al. Thermophysical properties enhancement and characterization of CuO nanoparticles enhanced HiTec molten salt for concentrated solar power applications[J]. International Communications in Heat and Mass Transfer, 2022, 132:105898.
doi: 10.1016/j.icheatmasstransfer.2022.105898 |
[24] | 王中原, 傅瑶, 邹杨, 等. 管壳式熔盐换热器折流板开孔数值分析[J]. 工程热物理学报, 2022, 43(10):2790-2797. |
WANG Zhongyuan, FU Yao, ZOU Yang, et al. Numerical analysis of baffle opening on shell and tube molten salt heat exchanger[J]. Journal of Engineering Thermophysics, 2022, 43(10):2790-2797. | |
[25] | 孙育滨, 高伟. 熔盐换热系统在化工行业的应用[J]. 广东化工, 2022, 49(11):21-23. |
SUN Yubin, GAO Wei. The application of molten salt heat exchange system in chemical industry[J]. Guangdong Chemical Industry, 2022, 49(11):21-23. | |
[26] |
YANG Y. Numerical study on heat transfer characteristics of molten salt in a flat tube with circular helical wire[J]. Applied Thermal Engineering, 2023, 227:120373.
doi: 10.1016/j.applthermaleng.2023.120373 |
[27] | 张永乐, 吴玉庭, 张灿灿, 等. 熔盐电磁感应加热器的数值模拟与分析[J]. 太阳能学报, 2021, 42(8):243-250. |
ZHANG Yongle, WU Yuting, ZHANG Cancan, et al. Numerical simulation and analysis electromagnetic induction heater for molten salt[J]. Acta Energiae Solaris Sinica, 2021, 42(8):243-250. | |
[28] |
操松林, 呼核升, 操瑞嘉, 等. 熔盐泵现状与展望[J]. 流体机械, 2019, 47(11):49-55.
doi: 10.3969/j.issn.1005-0329.2019.11.010 |
CAO Songlin, HU Hesheng, CAO Ruijia, et al. The present situation and prospect of molten salt pump[J]. Fluid Machinery, 2019, 47(11):49-55.
doi: 10.3969/j.issn.1005-0329.2019.11.010 |
|
[29] | 牛东圣, 周治, 肖斌, 等. 槽式光热电站熔盐管道系统防凝研究进展[J]. 热力发电, 2020, 49(3):1-7. |
NIU Dongsheng, ZHOU Zhi, XIAO Bin, et al. Advances in freeze protection of molten salt piping system in parabolic trough CSP plants[J]. Thermal Power Generation, 2020, 49(3):1-7. | |
[30] | 王鼎, 肖虎, 陈宇轩, 等. 基于CFD方法的熔盐储罐预热分析[J]. 华电技术, 2021, 43(7):75-81. |
WANG Ding, XIAO Hu, CHEN Yuxuan, et al. Preheating analysis on molten salt storage tank based on CFD method[J]. Huadian Technology, 2021, 43(7):75-81. | |
[31] | 杜保存, 贾凡, 郭一帆, 等. 50 MWe光热电站填充床储罐的高温蠕变与机械性能研究[J/OL]. 太原理工大学学报:1-9(2022-10-29)[2023-06-06]. https://kns.cnki.net/kcms/detail/14.1220.N.20221028.1329.002.html. |
DU Baocun, JIA Fan, GUO Yifan, et al. High temperature creep and mechanical analysis of the packed-bed thermal storage tank in 50 MWe solar power plant[J/OL]. Journal of Taiyuan University of Technology,1-9(2022-10-29)[2023-06-06]. https://kns.cnki.net/kcms/detail/14.1220.N.20221028.1329.002.html. | |
[32] |
徐玫, 王晓, 肖斌, 等. 塔式太阳能热发电系统性能模型及其仿真研究[J]. 太阳能学报, 2022, 43(2):238-245.
doi: 10.19912/j.0254-0096.tynxb.2020-0047 |
XU Mei, WANG Xiao, XIAO Bin, et al. Performance model and simulation study of solar power tower system[J]. Acta Energiae Solaris Sinica, 2022, 43(2):238-245.
doi: 10.19912/j.0254-0096.tynxb.2020-0047 |
|
[33] | 童家麟, 吕洪坤, 李汝萍, 等. 国内光热发电现状及应用前景综述[J]. 浙江电力, 2019, 38(12):25-30. |
TONG Jialin, LYU Hongkun, LI Ruping, et al. Review on status and application prospect of domestic csp generation[J]. Zhejiang Electric Power, 2019, 38(12):25-30. | |
[34] | 左芳菲, 韩伟, 姚明宇. 熔盐储能在新型电力系统中应用现状与发展趋势[J]. 热力发电, 2023, 52(2):1-9. |
ZUO Fangfei, HAN Wei, YAO Mingyu. Application status and development trend of molten salt energy storage in novel power systems[J]. Thermal Power Generation, 2023, 52(2):1-9. | |
[35] | 何志瞧, 童家麟. 太阳能光热发电现状及超临界CO2光热发电技术应用前景[J]. 华电技术, 2020, 42(4):77-83. |
HE Zhiqiao, TONG Jialin. Development status of solar thermal power generation and prospect of supercritical carbon dioxide technology applied in it[J]. Huadian Technology, 2020, 42(4):77-83. | |
[36] | 王智, 闫锐鸣, 刘亚丽, 等. 再压缩S-CO2塔式光热发电系统模拟及参数优化[J]. 汽轮机技术, 2021, 63(6):422-426. |
WANG Zhi, YAN Ruiming, LIU Yali, et al. Simulation and parameter optimization of recompression S-CO2 tower photothermal power generation system[J]. Turbine Technology, 2021, 63(6):422-426. | |
[37] | 李峻, 祝培旺, 王辉, 等. 基于高温熔盐储热的火电机组灵活性改造技术及其应用前景分析[J]. 南方能源建设, 2021, 8(3):63-70. |
LI Jun, ZHU Peiwang, WANG Hui, et al. Flexible modification technology and application prospect of thermal power unit based on high temperature molten salt heat storage[J]. Southern Energy Construction, 2021, 8(3):63-70. | |
[38] | 毛翠骥, 余雄江, 徐进良, 等. 耦合熔融盐储热的火电机组灵活调峰系统关键技术研究进展[J]. 热力发电, 2023, 52(2):10-22. |
MAO Cuiji, YU Xiongjiang, XU Jinliang, et al. Research progress on key technologies of flexible peak shaving system of thermal power unit coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2):10-22. | |
[39] | 周科, 李银龙, 李明皓, 等. 燃煤发电-物理储热耦合技术研究进展与系统调峰能力分析[J]. 洁净煤技术, 2022, 28(3):159-172. |
ZHOU Ke, LI Yinlong, LI Minghao, et al. Research progress on the coupling technology of coal-fired power generation-physical thermal storage and analysis for the system peaking capacity[J]. Clean Coal Technology, 2022, 28(3):159-172. | |
[40] | 邹小刚, 刘明, 肖海丰, 等. 火电机组耦合熔盐储热深度调峰系统设计及性能分析[J]. 热力发电, 2023, 52(2):146-153. |
ZOU Xiaogang, LIU Ming, XIAO Haifeng, et al. Design and performance analysis of deep peak shaving system of thermal power units coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2):146-153. | |
[41] | 刘金恺, 鹿院卫, 魏海姣, 等. 熔盐储热辅助燃煤机组调峰系统设计及性能对比[J]. 热力发电, 2023, 52(2):111-118. |
LIU Jinkai, LU Yuanwei, WEI Haijiao, et al. Design and performance comparison of peak shaving system of coal-fired unit aided by molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2):111-118. | |
[42] | 范庆伟, 居文平, 黄嘉驷, 等. 基于储热过程的工业供汽机组热电解耦研究[J]. 汽轮机技术, 2019, 61(3):221-223. |
FAN Qingwei, JU Wenping, HUANG Jiasi, et al. Research on decoupling of heat and power of industrial steam supply unit based on heat storage process[J]. Turbine Technology, 2019, 61(3):221-223. | |
[43] | 张显荣, 徐玉杰, 杨立军, 等. 多类型火电-储热耦合系统性能分析与比较[J]. 储能科学与技术, 2021, 10(5):1565-1578. |
ZHANG Xianrong, XU Yujie, YANG Lijun, et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10(5):1565-1578. | |
[44] | 王惠杰, 董学会, 昝永超, 等. 熔盐储热型塔式太阳能与燃煤机组耦合方式及热力性能分析[J]. 热力发电, 2019, 48(7):47-52. |
WANG Huijie, DONG Xuehui, ZAN Yongchao, et al. Coupling method and thermal performance analysis for molten salt heat storage tower solar energy power station and thermal power unit[J]. Thermal Power Generation, 2019, 48(7):47-52. | |
[45] | 庞力平, 张世刚, 段立强. 高温熔盐储能提高二次再热机组灵活性研究[J]. 中国电机工程学报, 2021, 41(8):2682-2691. |
PANG Liping, ZHANG Shigang, DUAN Liqiang. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J]. Proceedings of the CSEE, 2021, 41(8):2682-2691. | |
[46] | 王坚, 王辉. 火电厂抽汽储能深度调峰技术研究[J]. 电力勘测设计, 2022(6):30-34. |
WANG Jian, WANG Hui. Research on the energy storage technique by steam extraction from thermal power units used to deep load modulation[J]. Electric Power Survey & Design, 2022(6):30-34. | |
[47] | 林俊光, 仇秋玲, 罗海华. 熔盐储热技术的应用现状[J]. 上海电气技术, 2021, 14(2):70-73. |
LIN Junguang, QIU Qiuling, LUO Haihua. Application status of molten salt heat storage technology[J]. Journal of Shanghai Electric Technology, 2021, 14(2):70-73. | |
[48] | 吴玉庭, 张晓明, 王慧富, 等. 基于弃风弃光或低谷电加热的熔盐蓄热供热技术及其评价[J]. 中外能源, 2017, 22(2):93-99. |
WU Yuting, ZHANG Xiaoming, WANG Huifu, et al. Molten salt heat storage and supply technology based on heating using abandoned wind power,PV power or off‑peak power[J]. Sino-Global Energy, 2017, 22(2):93-99. |
[1] | MENG Qiang, TIAN Xi, XIONG Yaxuan. Study on preparation of shape-stable phase-change materials based on cellular concrete and their performances [J]. Integrated Intelligent Energy, 2024, 46(3): 29-34. |
[2] | MENG Qiang, YANG Yang, XIONG Yaxuan. Study on thermal stability of molten salt composites added with SiO2 nanoparticles [J]. Integrated Intelligent Energy, 2023, 45(9): 32-39. |
[3] | SUN Jian, QIN Yu, HAO Junhong, YANG Yongping. Performance analysis on high temperature air source heat pump coupling cycle based on industrial waste heat [J]. Integrated Intelligent Energy, 2023, 45(7): 40-47. |
[4] | SUN Jian, QIN Yu, WANG Yinwu, WU Kexin, GE Zhihua. Study on the optimal temperature for flue gas waste heat recovery of the heat pump with new working fluid [J]. Integrated Intelligent Energy, 2023, 45(4): 19-25. |
[5] | DOU Zihui, LIU Jingxia, LI Baoli. Study on the solar-assisted ground-source heat pump system with seasonal heat storage in cold regions [J]. Integrated Intelligent Energy, 2023, 45(4): 52-58. |
[6] | LIU Yuanyuan, LIU Fangfang, JIA Tianxiang, HAN Zhao, SHANG Yongqiang, JIANG Shu. Design of the integrated energy heating(cooling) system for a commercial and residential park and its economy analysis [J]. Integrated Intelligent Energy, 2023, 45(12): 20-28. |
[7] | CHEN Zehong, LIAO E, WU Lei, CAO Qi, CHEN Guoqiang, DU Guanghan, LIU Guixiu, LI Gen. Stress calculation for supports and hangers of molten salt pipelines in solar thermal power stations [J]. Integrated Intelligent Energy, 2022, 44(4): 85-91. |
[8] | YU Li, XU Jingjing, MA Lanfang, WANG Youtian. Case study on the integrated energy service project with newly installed heat pumps [J]. Integrated Intelligent Energy, 2022, 44(1): 72-79. |
[9] | GUO Puwei, PENG Yue, DENG Jingmin, LI Bingfa, ZHOU Xing, HU Yun, GUO Haiqiang, WANG Jinxing. Feasibility study on the coupling application of flue gas waste heat recovery and energy storage technology [J]. Huadian Technology, 2021, 43(9): 62-68. |
[10] | TONG Jialin, HONG Qing, LYU Hongkun, WU Ruikang, YING Guangyao. Development status and application prospect of power side energy storage technology [J]. Huadian Technology, 2021, 43(7): 17-23. |
[11] | YU Qiang, HE Cong, ZHI Ruiping, LU Yuanwei, WU Yuting, YANG Guichun. Research on natural convection heat transfer of molten salts on vertical cylinder surface during heat storage [J]. Huadian Technology, 2021, 43(7): 54-61. |
[12] | XIONG Yaxuan, YAO Chenhua, SONG Chaoyu, WANG Huixiang, HU Ziliang, DING Yulong. Preparation and properties of low-cost phase-change heat storage materials based on semi-coke ash [J]. Huadian Technology, 2021, 43(7): 62-67. |
[13] | XIONG Yaxuan, SONG Chaoyu, YAO Chenhua, WANG Huihui, WANG Huixiang, HU Ziliang, WU Yuting, DING Yulong. Review on the stability of nanofluids [J]. Huadian Technology, 2021, 43(7): 68-74. |
[14] | WANG Ding, XIAO Hu, CHEN Yuxuan, YUE Song, ZHANG Yanping. Preheating analysis on molten salt storage tank based on CFD method [J]. Huadian Technology, 2021, 43(7): 75-81. |
[15] | GAO Song, REN Bohan, XU Jigang, XU Zhiqiang, LI Hongfei. Optimal center height of the receiver in a 100 MW solar power tower plant [J]. Huadian Technology, 2021, 43(5): 70-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||